NUMERICAL CALCULATION USING THE SIMPLE METHOD TO SOLVE THE LAMINAR FLOW PROBLEM IN A SUDDENLY EXPANDED CHANNEL
Keywords:
Navier-Stokes equations, separated flow, laminar flow, SIMPLE method, McCormack scheme, suddenly expanding channelAbstract
In the article, the calculation of flow interruption in the zone of sudden
expansion of a two-dimensional channel was carried out. Various flow
characteristics were calculated at different Reynolds numbers. Calculations were
carried out for laminar flow and based on the numerical solution of the unsteady
Navier-Stokes equation. Velocity results at different points of the channel and the
length of the piles were studied with the change of Reynolds number after the sudden
expansion of the channel, and the velocity and pressure were studied. The
relationship between was determined using the SIMPLE method. Various schemes
were used to solve this problem numerically. To check the correctness of the results,
comparisons with experiments were carried out.
References
. Blasius Н. Laminare Stromung in Kanalen Wechselnder Breite. Zeitschrift fur
Math. und Phys., 1910, vol. 58, no. 10, pp. 225–233.
. Honji H. The starting flow down a step. J. Fluid Mech., 1975, vol. 69, iss. 2, pp.
–240. DOI: https://doi.org/10.1017/S0022112075001413
. Синха С.П., Гупта А.К., Оберай М.М. Ламинарное отрывное обтекание
уступов и каверн. Ч. 1. Течение за уступом. Ракетная техника и космонавтика,
, т. 19, № 12, с. 33–37.
. Armaly В.F., Durst F., Pereira J.C.F., et al. Experimental and theoretical
investigation
of backward-facing step flow. J. Fluid Mech., 1983, vol. 127, pp. 473–496. DOI:
https://doi.org/10.1017/S0022112083002839
. Чжен П. Отрывные течения, М., Мир, 1972.
. Гогиш Л.В., Степанов Г.Ю. Турбулентные отрывные течения. М., Наука,
. Le H., Moin P., Kim J. Direct numerical simulation of turbulent flow over a
backward-facing step. J. Fluid Mech., 1997, vol. 330, pp. 349–374. DOI:
https://doi.org/10.1017/S0022112096003941
. Durst F., Melling A., Whitelow J.H. Low Reynolds number flow over a plane
symmetric sudden expansion. J. Fluid Mech., 1974, vol. 64, iss. 1, pp. 111–118.
DOI: https://doi.org/10.1017/S0022112074002035
Versteegh Т А, Nieuwstadt F T 1997 Turbulent Budgets of Natural Convection
in an Infinite,Differentially Heated, Vertical Channel Intern. J. Heat Fluid Flow. vol
P 135
Boudjemadi R, Maupu V, Laurence D, Le Quere P 1996 Direct Numerical
Simulation of Natural Convection in a Vertical Channel: A Tool for Second-Moment
Closure Modelling Proc. Engineering Turbulence Modelling and Experiments 3
(Amsterdam: Elsevier) P 39
Peng S-H, Davidson L 2001 Large Eddy Simulation of Turbulent Buoyant Flow
in a Confined
Cavity Intern. J. Heat Fluid Flow. vol 22 P 323
INTERNATIONAL CONFERENCE ON ANALYSIS
OF MATHEMATICS AND EXACT SCIENCES
Volume 01, Issue 05, 2024
INTERNATIONAL CONFERENCE ON ANALYSIS OF MATHEMATICS AND EXACT SCIENCES universalconference.us
Cristopher R Responsible NASA official. “Turbulence modeling Resource.
NASA Langley
Research Center”, http://turbmodels.larc.nasa.gov. (data obrashcheniya 04.04.2019)
. Acrivos A., Schrader М.L. Steady flow in a sudden expansion at high Reynolds
numbers. Phys. Fluids, 1982, vol. 25, iss. 6, pp. 923–930. DOI:
https://doi.org/10.1063/1.863844
. Лойцянский Л.Г. Механика жидкости и газа // Маcква. Наука, 1987.-678
с.
. MacCormack R. W. (1969). The Effect of Viscosity in Hypervelocity Impact
Cratering. — AIAA Paper 69—354, Cincinnati, Ohie.
. Маликов З.М., Мадалиев М.Э. Численное моделирование течения в
плоском внезапно расширяющемся канале на основе новой двужидкостной
модели турбулентности. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные
науки, 2021, № 4 (97), с. 24–39. DOI: https://doi.org/10.18698/1812-3368-2021-4-
-39